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Synopsis 

An earlier model relating the variation of the steady-shear melt viscosity of high-density poly- 
ethylene to the molecular weight distribution is applied toward predicting the steady-shear elastic 
compliance, the first normal stress difference, and relaxation spectrum as a function of shear rate 
from the molecular weight distribution. The model envisions the cutting off of longer relaxation 
times as the shear rate is raised such that a t  any shear rate + the molecular weights and their corre- 
sponding maximum relaxation times T~ are partitioned into two classes; the relaxation times are 
partitioned into operative and inoperative states, depending on whether they are less than or greater 
than T=, the maximum relaxation time allowed at  +. Equations relating molecular weight and re- 
laxation time to the steady-shear elastic compliance and viscosity are assumed valid a t  nonzero shear 
rqtes, except for the partitioning effect of shear rate. The shear rate dependence of the first normal 
stress difference and the steady-shear viscosity for polyethylene melts is successfully predicted over 
the range covered by the cone-and-plate viscometer. The assumed proportionality constant between 
T~ and ll+ was determined to be 1.7. Using this relation, the maximum relaxation time at  190°C 
for a polyethylene molecule of molecular weight M is given by T,,, = 1.4 X (M)3.33. Reasonable 
agreement has been obtained between the experimentally determined relaxation spectrum of a 
polyethylene'melt and that predicted from the molecular weight distribution. The agreement is 
best a t  the longest relaxation times. 

INTRODUCTION 

The elastic properties of polymer melts play a dominant role in polymer pro- 
cessing, particularly in extrudate swelling and unstable flow. Consequently, 
a fundamental understanding of the relationship of molecular structure to elastic 
parameters is desirable. 

Much progress has been made in the last 10 years toward understanding the 
effect of molecular parameters on the viscoelastic behavior of polymer melts and 
solutions. While the specific mechanisms leading to the variation of steady-shear 
viscosity and elastic parameters with shear rate are still debated, the prevailing 
view of most authors is that molecular entanglements are the source of both the 
elasticity and variation of viscosity with shear rate in uncrosslinked high mo- 
lecular weight polymer melts.' Grae~s ley~B?~ proposes that the shear rate de- 
pendence of the viscosity is due to the variation of entanglement density with 
shear rate. However, the resulting theory does not directly give insight into 
precisely how the molecular weight distribution affects viscoelastic behavior. 
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Shida and ShrofP have combined the shear dependence from Graessley’s 
theory with linear viscoelastic data to predict the steady-shear viscosity. However, 
no direct quantitative connection with molecular weight is demonstrated. 

In an earlier publication? the author demonstrated that the steady-shear melt 
viscosity of high-density polyethylene melts could be directly predicted from 
the molecular weight distribution. This was accomplished by partitioning all 
molecular weights present in the sample into two classes; those below the par- 
titioning molecular weight M,  contribute to the viscosity as they do at zero shear, 
and those above M,  contribute to the viscosity as though they were of molecular 
weight M,. M,  is a unique function of shear rate. 

In view of the author’s successful prediction of melt viscosity, and the pre- 
diction by others of relaxation spectra7y8 and elastic propertiesg from steady-shear 
viscosity data, the application of the author’s model to elastic behavior in poly- 
ethylene melts seems justified. This approach is shown to successfully account 
for the variation of the first normal stress difference with shear rate, and gives 
a reasonable approximation to the terminal relaxation spectrum. 

EXPERIMENTAL 

The two polyethylene samples used in this study were made by different ex- 
perimental processes. 

The molecular weight distribution data were obtained at  135OC with four 
Styragel columns of porosities lo6, lo5, lo4, and lo3 A, and calibration was ef- 
fected using a modified6 universal calibration procedure. 

Capillary rheological data were obtained at  190°C on an Instron capillary 
rheometer with a capillary having an LID of 33.1. Rabinowitsch corrections were 
applied to the data. 

The normal stress data were obtained on the Instron Model 3250 rotary 
rheometer a t  190°C using a 4-cm disc and a cone angle of 40 milliradians. The 
load cells were calibrated with a NBS Class-C weight. 

The first normal stress difference N1 was calculated from 

where F, is the measured thrust normal to the disc and R is the radius of the disc. 

MODEL 

In an earlier publication? the author interpreted the partitioning of molecular 
weights a t  any given shear rate i. (into those that contribute to the viscosity as 
they do at  zero shear and those that do not) as the inability of molecular weights 
larger than the partitioning molecular weight M, to fully relax in the time scale 
proportional to 1/+. In order to apply the earlier model for application to elastic 
phenomena, we will make three assumptions. First, the onset on non-Newtonian 
behavior associated with a particular molecular species of molecular weight M 
implies that the maximum relaxation time associated with M is no longer oper- 
ative. Second, the maximum allowed relaxation time T, is proportional to the 
reciprocal of the shear rate. Finally, we will assume that each molecule exhibits 
an almost continuous spectrum of relaxation times such that, in addition to its 
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characteristic longest relaxation time, a molecule of molecular weight Mk also 
undergoes the largest relaxations associated with molecular weights of Mk- 1, 
Mk-2, etc., where Mk > M k - l >  Mk-2. This assumption is in apparent conflict 
with the theory of Rouselo in which the spacing between a molecule's longest 
relaxation time and its second longest is considerably larger than we have pos- 
tulated. 

These assumptions imply that at  any given shear rate, both molecular weights 
and their characteristic relaxation times are partitioned into two classes: the 
relaxation times associated with the molecular weights are partitioned into those 
that are operative and those that are not, and the molecular weights into those 
whose maximum relaxation times are not operative and those whose maximum 
relaxation times are still operative. Further, there is a one-to-one relation be- 
tween shear rate and the longest allowed relaxation time, 7,. 

Based upon the assumed partitioning of relaxation times as described above, 
the author proposes the following relation between the relaxation spectrum and 
the viscosity at  any shear rate. The relation 

qo = Hd7 

is obtained'l from the general viscoelastic models for zero shear. The present 
model implies that the only difference between a finite shear rate + and zero 
shear is the cutting off of the relaxation times associated with molecular weights 
larger than that of the largest molecule undergoing Newtonian flow at +. 
Consequently, zero-shear relations can be used at  nonzero-shear rates using only 
the partition function (i.e., the relation between + and 7,) to describe the shear 
dependence. Consequently, eq. (1) then becomes 

where the assumed relation between 7, and i. is used. 
For a monodisperse sample of molecular weight M greater than M,, eq. (2) 

predicts that the viscosity will be solely a function of the maximum allowed re- 
laxation time 7,, which corresponds to the maximum allowed relaxation time 
for a molecule of molecular weight M,. From the third assumption, it follows 
that all samples having M > M, should have viscosities equivalent to that of M,. 
This is a good approximation6 to the experimental behavior of narrow molecular 
weight distribution materials. In effect, a molecule's contribution to the viscosity 
is strictly dependent on the longest allowed relaxation time (allowed either by 
virtue of its molecular weight or the shear rate constraint). 

Differentiating eq. (2) with respect to 7,, 

d q / d ~ ,  = H ( 7 , )  (3) 

The relation between the maximum allowed relaxation time and the largest 
molecular weight that acts in a Newtonian fashion, M,, is6 (based on the assumed 
proportionality between 7, and l/+) 

7, = aM,3.33 (4) 

where a is a constant. The differentiation indicated in eq. (3) may now be per- 
formed (as shown in the Appendix) since q can be represented in terms of MC6 
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(it should be noted that Mw* and Mz* in eq. 3 of ref. 6 are incorrect; their correct 
form is given in the Appendix): 

* 0.51 [ 3.36 (%) dq K (Mw*)2-36A2 H ( 7 c )  = - = - 
d-rc 3 . 3 3 ~ ~  (Mc)2.33 

Mz* -0.49 M ,  - Mz* + 1.02 (-) [ 
MW* Mw* 

where 

c-1 a 

i=l i=C 
Mw* = C h;Mi + Mc C h;. 

c-1 

i=l i=C 
C hiMi2 + Mc2 2 hi 

Mz* = 
Mw* 
a 

A 2  = C h i  
i=C 

and where K = 10-12.296,6 and hi is the weight fraction of the ith component. The 
value for the exponent in the relation between relaxation time and Mc used here 
have been changed from that used in the earlier publication6 on the basis of the 
availability of improved low shear rate data from the cone-and-plate viscometer 
and additional high molecular weight polystyrenes used in the calibration pro- 
cedure. 

The relation between the steady-shear elastic compliance and the relaxation 
spectrum has been shown to be 

Analogous to the definition in eq. (2), the steady-shear elastic compliance at  the 
shear rate 

Je(i.1 = TC 7ffdT/[q(?)I2 (6b) 

is then taken as 

0 

or, substituting for H ( T ‘ ~ )  = d q / d ~ ’ ~ ,  

Integrating the right side of eq. (7) by parts and substituting for T ,  and q, 

J e ( ? )  = 

* 0.51 
(Mw*)3.36 (&) ~ ( M , s ” ) }  

Mz* 1.02 

Mw * K(Mw*)6.72 (-) 

where 
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M ,  = 540,000 i,-0.300 (9) 

as determined empirically.6 
Before applying the above relations, I should like to comment on a pertinent 

point made by the referee. It has been pointed out to me that it should be pos- 
sible to predict H ( T , ~ / )  from the viscosity (as predicted earlier6) and the relations 
as given by Shida and S~hrof f .~  While this may in principle be possible, the shear 
dependence of the relations of Shida and Shroff is based on Graessley's model. 
Their derived shear dependence of the relaxation spectrum is not as postulated 
in my model (i.e., a sharp cutoff of the spectrum as a result of increasing shear 
rate), but rather a more complicated relation. Furthermore, as pointed out 
earlier: one of the basic assumptions upon which my prediction of viscosity from 
the MWD is based is that a given molecule's contribution to the viscosity is in- 
dependent of communal properties (in sharp contrast to the assumptions of 
Graessley's theory4). Because of these apparent disagreements, I feel that the 
relations formulated here are more consistent with the assumptions used earlier6 
to predict the steady-shear melt viscosity. 

RESULTS AND DISCUSSION 

First Normal Stress Difference 

From eqs. (5) and (8) for the relaxation spectrum and steady-shear elastic 
compliance, respectively, it can be seen that there is only one unknown param- 
eter, a, which is just the proportionality constant between the longest relaxation 
time for a molecule of molecular weight M, T ~ ,  and M3.33. This parameter will 
be determined by comparing the experimentally determined first normal stress 
difference, N1, to that predicted by the relation1' 

N1 = 2Je(j.)02 (10) 

where Je(i .)  is the shear rate-dependent elastic compliance as given in eq. (8), 
and u is the shear stress. 

The molecular weight distributions of the two samples employed to illustrate 
the use of the model are given in Table I. Sample A has a relatively broad MWD, 
while the MWD of B is considerably narrower. J,(+)/a was calculated from eq. 
(8) at  various shear rates from the molecular weight distribution by approxi- 
mating the integral by a modified Simpson's method.12 The calculated values 
of J ,  (+)/a and q(y )  were then used to calculate Nl/a from eq. (8) and the relation 
B = q+, where q was calculated a t  the shear rate y ,  in the same manner as given 
in the previous publication.6 By finding the multiplicative factor applied to 
25, (+)u2/a that would produce coincidence with the experimental normal stress 
data, a was found to be equal to 1.4 X from this procedure. The experi- 

TABLE I 
Molecular Weight Distributions of Samples A and B 

Sample ii?, 
A 12.1 158 732 1340 13.1 39 
B 28.2 148 559 1261 5.2 32 
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Fig. 1. Variation of steady-shear melt viscosity q and first normal stress difference N1 with shear 
rate for sample A. Curves are those predicted from the molecular weight distribution. Closed 
squares and triangles are experimental cone-and-plate and capillary viscosity data, respectively, 
and circles are experimental normal stress data from Instron. Open circles and triangles are cone- 
and-plate data supplied by Prof. W. W. Graessley. 
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Fig. 2. Variation of steady-shear melt viscosity 17 and first normal stress difference N1 with shear 
rate for sample B. Curves are those predicted from the molecular weight distribution. Squares 
and triangles are experimental cone-and-plate and capillary viscosity data, respectively, and circles 
are experimental normal stress data. 

mental and predicted first normal stress difference and steady-shear viscosity 
data for samples A and B are given in Figures 1 and 2. The predicted shear rate 
dependence of the first normal stress and the steady-shear viscosity are in rea- 
sonable agreement with the experimental data over the limited shear rate range 
covered by the cone-and-plate viscometer. Both the positions and shapes of 
the curves for both samples, having quite different molecular weight distribu- 
tions, are described by adjusting the one empirical parameter a. 

for a into eq. (4) and combining with eq. (9), we get Substituting 1.4 X 

7c = 1.7/j. (11) 

Thus, the proportionality constant in the assumed proportionality of rC to l/+ 
is determined. 
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Fig. 3. Plot of the predicted dependence of steady-shear elastic compliance J,(+) on shear rate 
(open points) and shear stress (solid points). Sample A is represented by circles and sample B, by 
triangles. 

Figure 3 is a plot of the predicted steady-shear elastic compliance as a function 
of shear rate. As can be seen in the figure, J, (9) is a monotonically decreasing 
function of shear rate producing a sigmoidal-shaped curve, which appears to 
approach a constant value at  higher shear rates. This predicted decrease of J,(+) 
with + is experimentally observed in a number of materials.13 Graessley and 
Segal14 have also experimentally observed a decrease in J,(+) with y in con- 
centrated solutions of broad molecular weight distribution polystyrene samples. 
However, since the agreement between the experimental and the predicted 
changes in normal stress with shear rate in Figures 1 and 2 is over a more limited 
shear rate range, the higher shear rate portions of the J, curves represented in 
Figure 3 cannot be verified except by qualitative comparison to results on other 
systems. 

The Relaxation Spectrum 

The relaxation spectrum ought to be predictable from the MWD through eq. 
(5). I have chosen to compare the predicted H ( T )  spectrum of a high-density 
polyethylene sample studied by Shida and Shroff (HD-173) from the molecular 
weight distribution as determined in our laboratory and eq. (5) (Fig. 4). The 
relaxation spectrum of Shida and Shroff was determined a t  low shear rates (8.0 
X sec-l, where it is very nearly equivalent to the relaxation spectrum at zero 
shear rate). The molecular weight averages corresponding to the predicted re- 
laxation times are also given. The predicted relaxation spectrum has been ex- 
tended to very short relaxation times (high shear rates) for the purpose of illus- 
trating the predictions of the model, even though experimentally unstable flow 
occurs under shear. The predicted relaxation spectrum compares favorably with 
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Fig. 4. Comparison of the relaxation spectrum as experimentally determined by Shida and ShrofF 
and that calculated from the measured molecular weight distribution. The calculated relaxation 
times corresponding to the various molecular weight averages are shown. Long-dashed line repre- 
sents the data of Shida and Shroff. Points connected by short-dashed line are calculated relaxation 
spectrum at  zero shear rate. The predicted relaxation spectrum has been extended to very short 
relaxation times for the purpose of illustrating the predictions of the model, even though experi- 
mentally unstable flow would be occurring at  shear rates equivalent to these very short relaxation 
times. 

the data of Shida and Shroff a t  the long relaxation end. At shorter relaxation 
times, however, the experimental relaxation spectrum shows both a maximum 
and a minimum, the reason for which is not clear. However, Shroff has shown15 
that the minimum-maximum at the shorter relaxation times can be removed by 
a change in the procedure of the calculation of H ( 7 )  from experimental mea- 
surements. Consequently, the apparent deviation of the predicted and exper- 
imentally calculated relaxation spectra a t  the shorter relaxation times may be 
understandable. 

The present model appears to be similar to the concept of Shida and Shroff5 
for relating the experimental relaxation spectrum to the steady-shear viscosity 
in that the effect of shear rate is such that the longer relaxations are progressively 
cut off. However, their treatment indicates that the effect of increasing shear 
rate is not to sharply cut off the long relaxations as indicated in the present model. 
Further, they state that the net effect of increases in shear rate on the melt vis- 
cosity is essentially the removal of the highest molecular weight molecules. In 
the “partition” model, however, the long relaxations associated with high mo- 
lecular weight molecules are progressively not allowed, as the shear rate is in- 
creased, but the shorter relaxations associated with these high molecular weight 
molecules are still allowed and contribute to the steady-shear melt viscosity. 

CONCLUSIONS 

The partitioning of both molecular weights and their corresponding maximum 
relaxation times into the two classes appears justified in view of the good 
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agreement (over an admittedly limited shear rate range) between the experi- 
mental results on both steady-shear viscosity and normal stress data and those 
predicted from the molecular weight distribution. The fact that no specific 
mechanism describing the molecular relaxations and nature of entanglement 
coupling is given can be considered both a source of strength and weakness of 
the presented model. The “partition” model has been shown to provide a simple 
connection between molecular weight, relaxation time, and shear rate, which 
should prove useful in the relation of molecular structure to observed elastic 
phenomena such as parison swell and melt instability a t  high shear rates. 
Further, the concept upon which the model presented here is predicated (i.e., 
a molecules contribution to both the melt viscosity and elastic properties is simply 
a function of the largest allowed relaxation time) should provide the basis for 
a more thorough and elegant theoretical treatment. 

The model presented is quite useful in that both the viscosity and elastic pa- 
rameters can be easily and routinely calculated from the molecular weight dis- 
tribution data by anyone having access to a small computer. In view of the 
success of the model for high-density polyethylene melts, the applicability to 
other polymer systems should be investigated. We are presently involved in 
the application to polystyrene melts. 

Appendix 

From the chain rule 

dq dq  dMc -=-- 
dTc dM,  drC 

where 

dMc 1 

But as shown in reference 6, the viscosity at any nonzero shear rate may be represented as 

-= 
d TC 3.33aMc 33 

(13) 

where 

M u , * =  J M c M z d M + M c  da -dM 
S M ;  :l 

&McM2dadM+M,2 dM 
M,* = 

MW* 
and a is the cumulative distribution function.16 Equations (14a) and (15a) can also be written in 
terms of summations as 

C - 1  m 

,=1 i=c 
Mw* = C hjM, + M ,  C hi 

and 

where hi is the weight fraction of the i th  homolog of molecular weight Mi. 
As a result, i t  can be shown that 
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and 

Finally, to arrive a t  eq. (16) of the text, the definitions of AP, am*, and M2* are put in summation 
form for easy calculation from gel permeation-chromatographic data. 

The author would like to acknowledge the contributions of Mr. Neil Drislane and Mr. W. Wareham 
of the Instron Corporation for obtaining the cone-and-plate rheological data. He is also indebted 
to Drs. M. Shida and R. N. Shroff of the Chemplex Company for providing him with the high-density 
polyethylene sample HD-173, and to Prof. W. W. Graessley for the cone-and-plate rheological data 
he supplied, as well as the many useful discussions he has had with him. 
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